UAV (aka drone) Forensics
Who We Are

• David Kovar
 – Commercial UAV owner/pilot
 – Ex Big 4 - Cyber security investigator, Incident response consultant

• Greg Dominguez
 – Personal UAV owner/Pilot
 – Retired Air Force Computer Crime Investigator, Ex-Big 4 Investigator, former COO of forensic hardware firm

• Cindy Murphy
 – Cellphone Forensicator extraordinaire

• With thanks to Cellebrite for technical assistance
Why is the Relevant?
Market Growth and Jobs

• FAA - Drone sales are expected to grow from 2.5 million this year to 7 million in 2020
• AUVSI’s *The Economic Impact of Unmanned Aircraft Systems Integration in the United States* report shows the economic benefit of UAS integration. AUVSI’s findings show that in the first three years of integration more than 70,000 jobs will be created in the United States with an economic impact of more than $13.6 billion. This benefit will grow through 2025 when we foresee more than 100,000 jobs created and economic impact of $82 billion.
• According to OpenSecrets.org, which tracks the influence of Washington lobbyists, spending by groups pushing for drone legalization has exploded from $35 million in 2011 to $184 million last year
• 20,000 DJI drones sold per month
Illegal and inappropriate activity

- Drug delivery over US/Mexico border
- Drug and weapon delivery to prison
- Multiple invasions of privacy
- Flight above crowds and in controlled airspace
- Flight into operators and bystanders
If You Are in Law Enforcement

“There is evidence of a considerable increase in the unauthorized use of small, inexpensive Unmanned Aircraft Systems (UAS) by individuals and organizations, including companies. The FAA retains the responsibility for enforcing Federal Aviation Regulations, including those applicable to the use of UAS. The agency recognizes though that State and local Law Enforcement Agencies (LEA) are often in the best position to deter, detect, immediately investigate, and, as appropriate, pursue enforcement actions to stop unauthorized or unsafe UAS operations.”

Anti-drone Solutions

- RF fingerprinting
- Jamming
- Geo-fencing and no fly zones
- Tangle-drone – Drops net over drone
- Shotguns
- Debris and game jerseys
- Lasers
Terminology

- UAS – Unmanned Aerial System – Emphasis on system
- UAV – Unmanned Aerial Vehicle – The aircraft portion of the system
- GCS – Ground Control Station – The flight control portion of the system. May include manual and automatic control features
- Data link – radio system to transmit data to and from the UAV. Often used for telemetry, sensor data, and FPV operation
- Drone – Common term for any UAV but most often used to describe quads and other multirotor UAVs
- FPV – First Person View – technology that enables the operator to fly the UAV from the perspective of the UAV
Drone Forensics – High Altitude View
UAV workflow

Mission Planning
- Criteria
- Airframe
- Payload
- Operator
- Location
- Time frame

Approval
- Business
- Site logistics
- Safety
- Legal
- Risk
- Flight operations

Execution
- Logistics
- Flight crew
- Weather
- Flight operations

Analysis
- Data validation
- Product generation
- Quality assurance

Delivery
- Product delivery
- Product support
- Lessons learned
- Reporting
- Billing

June 5-8, 2016 Myrtle Beach, SC USA

Techno Security & Forensics Investigations Conference
Mobile Forensics World
UAV data flows

GPS signals

Data uplink to cloud

Telemetry to corporate network

PIC to UAV FC via radio controller

GCS via data link to UAV FC

Payload operator via data link to UAV mission payload

June 5-8, 2016 Myrtle Beach, SC USA
Operator, UAV, Environment Flows

Environment

- UAV
 - Base System
 - Communication Links
 - Sensors
 - Avionics
 - Autonomous Control

Ground Control Station
 - Operators
 - Communication Links

Techno Security & Forensics Investigations Conference
Mobile Forensics World
DJI Phantom 3 – Example UAV

• Very common UAV
• Relatively easy to hack
• SDK available
• Demonstrates all the major components
Connecting Evidence is Hard

“There is no SN number for the entire product, however, there is SN number for different components. So you could use one component SN number as the unique identifier such as Flight Controller SN number.”

- DJI
UAV Forensic Artifacts

Physical
- Drone
 - Flight controller
 - Sensor
 - Physical evidence
- Ground Station
 - Data link
 - Ground control station
 - Radio controller
- Support and Post Processing
 - Maintenance system
 - Image processing
 - Billing, R&D, etc.

Digital
- Mobile OS
- Traditional OS
- Embedded Linux
- Variety of file systems (e.g. JFFS2)
- Media storage
- EEPROMs
- Firmware

Other
- Mission planning
- Maintenance logs
- Purchase records
- Social media
- Fingerprints
Physical Artifacts
What Physical Evidence is Available?
Phantom 2 vs Phantom 3

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Vendor</th>
</tr>
</thead>
<tbody>
<tr>
<td>60601F</td>
<td>SZ DJI TECHNOLOGY CO., LTD</td>
</tr>
</tbody>
</table>

Information added by user.

Serial number and model number

These are just serial numbers.

No easy way to trace a hull to an individual
UAV CPUs & “operating systems”

The flight controller is the core system in a UAS and amounts to the aircraft’s CPU & operating system.

Open Source

- Openpilot
- Ardupilot (APM, Pixihawk)
- Multiwii
- KKmultipcopter

Commercial

- Parrot AR Drone FC
- Naza (DJI)
- Wookong (DJI)
- Dualsky (FC450, etc)

• Airware is trying to be the Microsoft/IBM of the UAV world, selling hardware and software that they hope is the defacto standard for flight controllers.

• Linux is the predominant OS for onboard UAV systems
UAV Exam – SDKs and Live UAV

• Most of the flight data is in RAM and most of the flight controller software is running off of flash media. Very little useful data persists after power is removed other than sensor data on the removable media.

• Similar to many other “normal” systems, APIs and SDKs exist for UAVs.

• Most commercial UAV applications will not extract all of the data an analyst needs.

• Be prepared to develop your own investigative tools using SDKs.
UAV Exam – SDKs and Live UAV

- **Battery:**

  ```
  {designedVolume=5200|fullChargeVolume=5200|currentElectricity=4141|currentVoltage=11876|currentCurrent=-961|remainLifePercent=100|remainPowerPercent=79|batteryTemperature=20|dischargeCount=2} 
  ```

- **MC:**

  ```
  {satelliteCount=6.0|homeLocationLatitude=40.4314293|homeLocationLongitude=-89.3118089|phantomLocationLatitude=40.4314619|phantomLocationLongitude=-89.3118157|velocityX=0.0|velocityY=0.0|velocityZ=-1.0|speed=0.1|altitude=-8.31500244140625|pitch=0.0|roll=-1.0|yaw=-120.0|remainPower=11878.0|remainFlyTime=0.0|powerLevel=2.0|isFlying=false|noFlyStatus=0.0|noFlyZoneCenterLatitude=0.0|noFlyZoneCenterLongitude=0.0|noFlyZoneRadius=0.0} 
  ```
JTAG Analysis
Short Answer – Not Much Success

• Some chips are sealed
• Data may not persist across reboots
• Further analysis required
The Internals – MCU and GPS
Log Analysis
UAV Exam – Data Logging (Black Box)

• Many flight controllers, PixHawk for example, have data logging capabilities included

• Others, such as the DJI Naza, require an off board data logger

• Some ground control station applications have data logging capabilities
Phantom 3 Logs

- The Phantom 3 series (Professional, Advanced and Standard) create very similar logs
 - UAV Flight Data Recorder creates FLY???.DAT files
 - The GCS or DJI GO.app creates DJIFLightRecord_date/time.TXT files
 - The ??? are a 3 digit sequence number
 - The logs will have a Date Time stamp
Phantom 3 Log Collection

• FLY????.DAT
 – Are stored on a 4GB microSD card on the bottom side of the Main Board inside the UAV
 – The UAV will push oldest .DAT out for newest
 – To remove the card the UAV must opened up
 • Not a simple task, but doable
 • Video link:
 https://www.youtube.com/watch?v=MNQUQ8p9IGE
White Epoxy
FLY????.DAT

• Remove the micro SD Card and image it
• Extract the .DAT file with the most recent date
• Use DatCon.exe a FREE application from Rowland Johnson https://datfile.net
• DatCon will extract a mountain of information
 – Mostly Flight Data (GPS, battery, motor, altitude, etc)
 – DatCon is designed to assist in crash cause determination
• Runs on PC, Mac, Linux
• DatCon converts the Flight Data Record from the UAV
• You have a bit of latitude in what it gives you
• You may want to run it a few times with different settings
• For Instance – selecting “Recording Start” gives you data starting before GPS Lock that includes the UAV serial number or “MC ID:”
DatCon

- The MC ID will look like:
 MC ID: 03Z0303948
 - It will be about 5 lines from the bottom of the file
 - This number is also on a label on the Main Controller on the main board
 - FYI – The number is also in the DJIFlightRecord_2016-03-27_[10-06-08].txt
 - Created by the DJI GO.app
 - And it is on the mobile device in various applications
DatCon

- DatCon creates the following files
 - FLY????_csv (huge very detailed spreadsheet)
 - FLY????_kml (if you ask it to) used to plug into Google Earth to see the flight track
 - FLY????_log.txt
 - FLY????_config.txt (Configuration log – contains MC ID)
FLY???\text{.csv}

- Seriously detailed Data
 - Over 100 columns of data
- GPS coordinates will give interesting location data
- Primary purpose is to log all flight data like a real “BLACK BOX”
 - Battery voltage, Battery load
 - Motor load, motor speed, etc
- Data may show a crash was a system failure, not an intentional act.
<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>205</td>
<td>5900</td>
<td>9.833</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>205.0844</td>
</tr>
<tr>
<td>206</td>
<td>5921</td>
<td>9.868</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>204.82642</td>
</tr>
<tr>
<td>207</td>
<td>5942</td>
<td>9.903</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>204.9422</td>
</tr>
<tr>
<td>208</td>
<td>5963</td>
<td>9.938</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>205.78519</td>
</tr>
<tr>
<td>209</td>
<td>5984</td>
<td>9.973</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>205.53592</td>
</tr>
<tr>
<td>210</td>
<td>6005</td>
<td>10.008</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>205.88269</td>
</tr>
<tr>
<td>211</td>
<td>6026</td>
<td>10.043</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>205.88269</td>
</tr>
<tr>
<td>212</td>
<td>6047</td>
<td>10.078</td>
<td>0</td>
<td>-89.311684</td>
<td>40.4314889</td>
<td>7</td>
<td>204.73094</td>
</tr>
<tr>
<td>213</td>
<td>6068</td>
<td>10.113</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>204.83455</td>
</tr>
<tr>
<td>214</td>
<td>6089</td>
<td>10.148</td>
<td>0</td>
<td>-89.311684</td>
<td>40.4314889</td>
<td>7</td>
<td>205.32309</td>
</tr>
<tr>
<td>215</td>
<td>6110</td>
<td>10.183</td>
<td>0</td>
<td>-89.311684</td>
<td>40.4314889</td>
<td>7</td>
<td>205.30276</td>
</tr>
<tr>
<td>216</td>
<td>6131</td>
<td>10.218</td>
<td>0</td>
<td>-89.311684</td>
<td>40.4314889</td>
<td>7</td>
<td>204.79594</td>
</tr>
<tr>
<td>217</td>
<td>6152</td>
<td>10.253</td>
<td>0</td>
<td>-89.311684</td>
<td>40.4314889</td>
<td>7</td>
<td>205.01433</td>
</tr>
<tr>
<td>218</td>
<td>6172</td>
<td>10.287</td>
<td>0</td>
<td>-89.311682</td>
<td>40.431489</td>
<td>7</td>
<td>204.99197</td>
</tr>
<tr>
<td>219</td>
<td>6194</td>
<td>10.323</td>
<td>0</td>
<td>-89.311682</td>
<td>40.431489</td>
<td>7</td>
<td>205.59831</td>
</tr>
<tr>
<td>220</td>
<td>6215</td>
<td>10.358</td>
<td>0</td>
<td>-89.311682</td>
<td>40.431489</td>
<td>7</td>
<td>205.22356</td>
</tr>
<tr>
<td>221</td>
<td>6236</td>
<td>10.393</td>
<td>0</td>
<td>-89.311682</td>
<td>40.4314892</td>
<td>7</td>
<td>204.58975</td>
</tr>
<tr>
<td>222</td>
<td>6257</td>
<td>10.428</td>
<td>0</td>
<td>-89.311682</td>
<td>40.4314892</td>
<td>7</td>
<td>205.058</td>
</tr>
<tr>
<td>223</td>
<td>6278</td>
<td>10.463</td>
<td>0</td>
<td>-89.311681</td>
<td>40.4314891</td>
<td>7</td>
<td>205.51707</td>
</tr>
<tr>
<td>224</td>
<td>6299</td>
<td>10.498</td>
<td>0</td>
<td>-89.311681</td>
<td>40.4314891</td>
<td>7</td>
<td>205.13417</td>
</tr>
<tr>
<td>225</td>
<td>6320</td>
<td>10.533</td>
<td>0</td>
<td>-89.311681</td>
<td>40.4314891</td>
<td>7</td>
<td>204.26878</td>
</tr>
<tr>
<td>226</td>
<td>6341</td>
<td>10.568</td>
<td>0</td>
<td>-89.311681</td>
<td>40.4314891</td>
<td>7</td>
<td>204.87111</td>
</tr>
</tbody>
</table>

June 5-8, 2016 Myrtle Beach, SC USA
Event Log

• Shows what amounts to a Boot sequence
• Shows Board:”wm320v2”
 – wm320 is one of the Professional model numbers
• Shows the Battery barcode: 6171153003445
 – It is on the battery, the serial number is not on the battery
 – Also, has First Home Point Lat & Long
Configuration Log

• More boot-initialization information
• The important piece in this text file is the MC ID: or UAV Serial Number
 – This is not the serial number on the outside of the UAV or on the Retail Box
 – It ties the physical airframe to the logs to the mobile device
DJI Flight Record

• Recorded by the GCS app (DJI Go.app)
• Data is sent from UAV
• Has Flight data similar to the Flight Record
 – Just not as much
• Can contain images and video
• Also contains the MC ID number
DJI Flight Record

• Photos can be carved manually with Winhex
 Header: 0xFFD8FFE000104A464946
 EOF: 0xFFD9

• All of the JPG files are together at the bottom of the file

• Still dissecting the data fields
DJI Flight Record

• There is an online parser:
 http://healthydrones.com

• Remember this is online and you are sending them the file

• Will allow you to download the .csv and kml

• Has other information also
- Healthy Drones view
- Shows the flight path
- Shows the plane name
- Shows other data in the other categories
- The address may even be in the Details section
DJI Flight Record

• Offline Free analysis tool
• TXTlogToCSVtool by ferraript
• Again, you will get the .csv and the photos
• This tool was developed for files created on Android devices so iOS created files may be slightly different
Getting the Files

• Image the SMART Device as you normally would to get the .txt files from the app
• Open the UAV, remove the microSD Card and Image
• The UAV may also be put in Flight Data Mode
• Show the mount for Mac
The Answer is Often in the Data
Sensor and Sensor Data

• The type of sensor will tell you a lot about the purpose of the flight
 - LIDAR
 - Optical
 - NVIR
 - Thermal
 - WiFi

• The sensor data will tell you a lot about where it has been, particularly since GPS data is critical for most types of missions
Sensors – Optical

Most common sensor out there

- Consumer - GoPro, DJI, Canon, Sony
- Pro-sumer and professional

Artifacts

- The image
- The EXIF data

Location

- Right there on the UAV – pull the SD card
Sensors – EXIF Data

The purpose of a camera is to take a picture, and EXIF data tells a story about the camera and where it was taking pictures.

- Image Description: DCIM\100MEDIA\DJI_0030.JPG
- Make: DJI
- Camera Model Name: FC300S
- Date/Time Original: 2016:03:27 10:15:57
- Create Date: 2016:03:27 10:15:57
- GPS Version ID: 3.2.0.0
- GPS Latitude Ref: North
- GPS Longitude Ref: West
- GPS Altitude Ref: Above Sea Level
- Aperture: 2.8
- GPS Altitude: 74.6 m Above Sea Level
- GPS Latitude: 40 deg 32' 15.84" N
- GPS Longitude: 89 deg 30' 50.63" W
- GPS Position: 40 deg 32' 15.84" N, 89 deg 30' 50.63" W

DJI Phantoms do not did not record altitude in the EXIF data unfortunately.
Sensors – EXIF Data
Sensor Data - Cloud

• **Consumer**
 – YouTube
 – Facebook
 – Etc

• **Commercial**
 – Data Mapper
 – Airware
 – Vendor specific

Question: Where are the credentials for uploading the imagery data to the cloud?
Evidence Beyond the UAV
UAS Exam – Launch Point Evidence

Ground Control Station
- Often a mobile device combined with a radio controller
- Vendor applications and community developed
- Looking for:
 - Default settings
 - Launch points, dates
 - Owner name, account

Other Items
- Spare removable media
- Other UAVs
- Laptops, cell phones, tablets
DJI GO.app Flight Data Mode

• You need the UAV, The RC and a device with the DJI Go.app

• Once all 3 are connected go to the Advanced Settings section of the GO.app

• Select Flight Data Mode
DJI GO.app Flight Data Mode
DJ1 GO.app Flight Data Mode

• Once in FDM you can connect UAV to a PC
• Yes, you will want to use a USB Write Blocker
• The UAV will mount and you can image the microSD card with your choice of tools
• While the UAV is in Flight Data Mode it will beep and it is loud
DJI GO.app Flight Data Mode

• If you do not have a USB write Blocker you can direct connect
• Just make sure you document your actions.
• To get the FAT32 microSD card to mount in Mac OS X use the command line:

 sudo hdiutil attach /dev/disk1s1 -shadow ~/Desktop/shadow

• No matter how you connect the UAV to a computer the transfer will be very slow (approx USB 1.1 speed)
• It will take an hour to image the 4GB microSD card
UAS Exam – Ground Control Station

Application configuration files contain interesting information

Drone Deploy:
- ajs_user_id
- %22dkovar%40kovarllc.com%22

Pix4D:
- 2016-03-27 10:34:03 [V] [WaypointCustomMissionDJI3::87] create wp at (4x.xxx689,-8x.xxx918) altitude: 50.000000
- displayBtnLogout(YES,username: dkovar@gmail.com)
- 2016-03-27 11:25:24 [D] [AppDelegate::38]

DJI Pilot:
- kUserDefaultKeyAircraftLocation – 4x.xxx448,-8x.xxx675,-1577 (My house)
- com.facebook.sdk:serverConfiguration1383125992006153 - <62706c69 73743030 ...>
UAS Exam – Remember that MC ID?

./com.dji.pilot/Documents/.device/history & ./com.dji.pilot/Library/Preferences/com.dji.pilot.plist

• <string>03Z0303948&02.04.10.07</string>/plist>com.facebook.sdk:serverConfiguration1383125992006153 - <62706c69 73743030 ...>

statistics.db

• {user=Anonymous&apptype=0&appversion=2522&devicetype=2&deviceversion=01.07.00.00&devicesn=7130333511&producttype=3&createtime=1459090198.971318&guid=F7F0A647-B460-41AD-B876-AD971E6079C1
• {user=Anonymous&apptype=0&appversion=2522&devicetype=1&deviceversion=02.04.10.07&devicesn=03Z0303948&producttype=3&createtime=1459090197.770736&guid=A8B53105-8B50-4F36-AAC9-3C5C09D5023D
• {user=Anonymous&apptype=0&appversion=2522&devicetype=0&deviceversion=01.22.40.95&devicesn=04CLA51862&producttype=3&createtime=1459090196.597396&guid=9C244F41-6F0A-4767-9930-78C74CED66FF;
• {user=Anonymous&apptype=0&appversion=2522&devicetype=2&deviceversion=01.07.15.01&devicesn=5443003511&producttype=3&createtime=1459095943.455033&guid=CDB1637E-E9D7-458E-B859-0FD3DC007ACC

Devicetype=1 – Airframe Devicetype=2 – Battery Devicetype=3 – Camera

Airframe tied to camera tied to multiple batteries tied to a mobile device tied to log files tied to images.
We’ve traced the UAV back home
UAS Exam – Home & Office Evidence

Maintenance, logging & business systems
- Flight and maintenance logs, often with date/time/location/aircraft
- Client & accounting data

Data analysis system
- If not cloud based, this will have a lot of disk, CPU, and RAM
- Historical sensor data

Other
- UAVs, spare parts
- Spare removable media
- Other GCS
Analysis of Other UAVs
UAVs with PixHawk Flight Controller

The following was created in under two minutes using Mission Planner.
UAVs with PixHawk Flight Controller

And this is what a crash looks like
UAVs with PixHawk Flight Controller

And all flight parameters are easily collected
Closing Thoughts
Challenges & Solutions

• Data and command & control moving from WiFi to Bluetooth to dedicated radio to LTE & 4G
 • Harder to hack, easier to triangulate and identify with existing tools

• Many vendors, lots of variety, embedded systems

• Focus on ground control stations and post processing systems, analyze the sensor data. They tell 80% of the story
Closing Thoughts - Forensics

The UAV is paired with controller
&
The UAV is also paired with ground control station

Means unique IDs

Means forensic evidence linking devices
Closing Thoughts - Forensics

- We needed to analyze the following to cover the entire system:
 - Three different versions of Linux
 - IOS or Android
 - OS X or Windows
 - 6+ file systems
 - ser2net
 - Wifi or Bluetooth or 915Mhz data link
 - EXIF
 - GPS
 - “Social media”
 - SDK

No single UAV analysis tool
Future Work

• Develop stand alone versions of all tools
• Further JTAG analysis
• Further file analysis using above tools
• Facebook and other social media integration
• Other platforms
• Staying current
Closing Thoughts

• Cybersecurity:

 The proper term for drones is sUAS – small unmanned aerial system. Take a system approach to security and investigations, do not treat the vehicle as a discreet or standalone element.

• Law & Policy:

 UAVehicle. Apply law and policy to the risk/threat posed by the sensors and services rather than by the delivery mechanism

 Federal agencies using UAVs should consider Federal guidance on data protection and retention - http://www.justice.gov/file/441266/download